

MCP4218D—32V大电流白光LED驱动芯片

1、概述

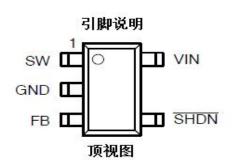

MCP4218D 是一款 DC/DC 升压转换器,可为多个 LED 提供恒定精确的驱动电流。 当固定开关频率为 1MHz 时,MCP4218D 可以配套小值的外部陶瓷电容和电感。通过由 外部电阻 R1 设置的可调电流,MCP4218D 可以驱动串联连接的多个 LED。MCP4218D 适合驱动相同类型的 LED,其中白色的 LED 灯最多可以串联 9 个或驱动电压最高为 32V。

LED 亮度调节可使用 $1 \land DC$ 电压、 $1 \land DC$ 电阻、 $1 \land DC$ 电阻 $1 \land DC$ 电阻 $1 \land$

MCP4218D 除了具有热保护和过载电流限制功能外,当出现 LED 开路故障时,芯片进入超低功耗工作模式。芯片采用 SOT23-5 的小外形封装。

2、特性

- 开关峰值电流 1A
- 驱动电压最高为 32V
- 电源转换率最高为90%
- 关断电流小于 10uA
- 1MHz 的固定频率与低噪音
- 软启动时,限制浪涌电流
- LED 开路过压保护
- 3.3V 欠压关断 (UVLO)
- 过热保护
- AEC-Q100 认证,适用于汽车电子
- RoHS



SOT-23-5

3、引脚描述

1) SW 引脚连接到升压转换器的内部 CMOS 功率 开关的漏端。电感和肖特基二极管阳极应连接到 SW 引脚上。SW 引脚的连线尽可能短,以减少环路面积。一个过压检测电路连接到 SW 脚。当电压达到 37V,设备进入低功耗安全模式,防止 SW 电压超出最大额 定值。

- 2) GND 是参考零点电压引脚,这个引脚应该直接连接到 PCB 的地。
- 3) FB反馈引脚,FB电位被钳位在0.3 V。在FB脚和GND间连接一个电阻R1来设置 LED的电流,具体电流大小可参考公式3.1

$$I_{LED} = \frac{0.3V}{R1}$$
 3.1

- 4) 注意,LED的最低电位的负极连接到FB脚。
- 5) SHDN 是逻辑输入的关断控制端。当该引脚电压低于 0.4 V,器件处于关断模式,近似于零电流。当该引脚电压高于 1.5 V 时,器件启动。
- 6) VIN是内部逻辑电路的电源输入引脚。VIN引脚电压的输入电压范围为3.3V~32V。 建议放置一个旁路陶瓷电容(4.7uF)在VIN脚和接地脚之间。如果VIN电压低于3.3 V,器件 停止工作。

表3.1	리	脚描述
1XJ.I	JI	ルギュロメル

引脚序号	引脚名称	功能	
1	SW	开关管脚,这是内部电源开关的漏极	
2	GND	接地管脚,接到地平面	
3	FB	反馈管脚,接到最后的 LED 的负极	
4	SHDN	关断管脚(逻辑低),置高使能驱动器	
5	VIN	电源输入管脚	

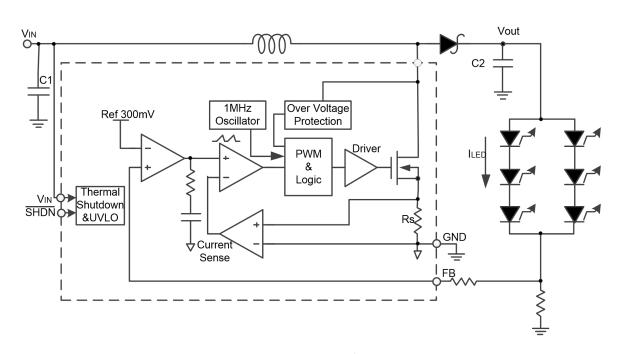


图3-1 芯片原理框图

4、器件工作描述

- 1) MCP4218D是一个固定频率的(1MHz),低噪音,电感升压转换器,它提供了具有优良的线性度和负载调节率的恒定电流。该器件在SW脚和GND脚之间,使用了一个高压NMOS开关来驱动电感。当NMOS开关关闭时,存储在电感上的能量通过肖特基二极管释放到负载。
- 2) NMOS开关的占空比是通过FB端上的反馈电压,在器件内部进行调整和控制,最终在FB引脚输出一个恒定的0.3V的调节电压。流过LED的电流的大小与电阻的阻值成反比(I=0.3V/R1)。
- 3) 在初始的上电阶段,内部NMOS开关的占空比被限制,以限制浪涌电流,同时提供一个软启动的工作模式。
- 4) 如果出现LED开路的情况,反馈控制环路将会打开,输出电压将持续增大。一旦输出电压超过37V,内部保护电路将会启动,器件进入一个低功耗的安全工作模式。
- 5) 器件包含过热保护电路,当器件的结温度大于150℃时,器件自动停止工作,直到结温度下降到130℃,器件恢复正常运作。

5、应用

MCP4218D 可以应用在 GPS 导航系统,便携式多媒体播放器,手持设备。具体应用可以参考图 5-1,5-2 和 5-3 所示的典型应用电路。5-1 的 LED 规格为 3.3V/20mA,5-2 和 5-3 中的 LED 规格为 2.1V/250mA。

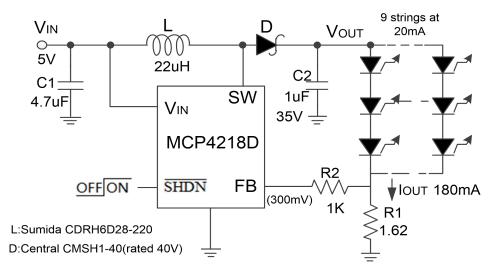


图5-1 典型应用电路1

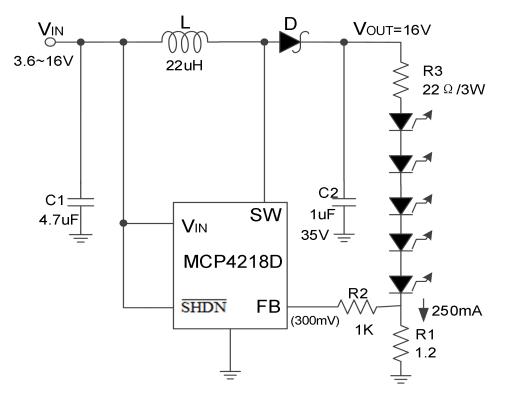


图5-2 典型应用电路2

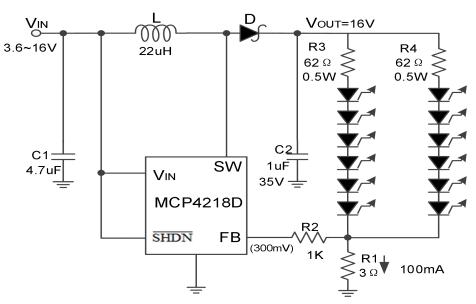


图5-3 典型应用电路3

表5.1 最大额定范围

参数	符号	参数范围	单位	备注
VIN 电压	V _{IN}	- 0.3∼+42	V	
FB 电压	V_{FB}	- 0.3∼+7	V	
SHDN 电压	V_{SHDN}	- 0.3∼+40	V	
SW 电压	$V_{\rm SW}$	- 0.3∼+40	V	
贮存温度	Tstg	-40∼+150	$^{\circ}$	
结点温度	Tj	-40∼+150	$^{\circ}$	
焊接温度	$T_{soldering}$	300	$^{\circ}$	
热阻	Rthj-a	220	K/W	
ESD耐压	V _{ESD-HBM}	±2000	V	人体模型1)
	V _{ESD-CDM}	±1000	V	充电设备模型2)

附注: 当器件工作状态超出表 5.1 中的最大额定范围时,器件会损坏。功能应用的条件不应超出以上 推荐的工作条件。

表5.2 推荐工作条件(参考图5-1所示的典型应用电路)

参数	参数范围	単位
VIN 引脚电压	3.6~30	V
SW 引脚电压	0~32	V
环境温度范围	-40~+150	$^{\circ}\!$

附注: 当器件被焊接在PCB板上时, SOT23-5的封装热阻为JA=220℃/W。

¹⁾ESD 耐压人体模型依据 JESD22-A114。

²⁾ESD 耐压充电设备模型依据 JESD22-C101E。

表5.3 直流电气特性参数

(如无特殊说明: V_{IN}=3.6V, Ta=25℃)

符号	参数	测试条件	最小值	典型值	最大值	単位
10 工作由法	VFB = 0.2V		0.8	1.5	A	
IQ	IQ 工作电流	VFB = 0.4V		0.1	0.6	mA
I_{SD}	关断电流	VSHDN=0V		6	10	uA
$ m V_{FB}$	FB 引脚电压	IOUT = 180mA	285	300	315	mV
I_{FB}	FB 输入电流				1	uA
$ m V_{ENH}$	/- // /= /-	使能开启电压		1	1.5	17
$V_{\hbox{\scriptsize ENL}}$	使能阈值	使能关闭电压	0.4	0.5		V
Fsw	开关频率		0.8	1.0	1.3	MHz
	工子中沟阳型	VIN=3.6V	600			mA
I_{LIM}	开关电流限制	VIN=5V	750			
R_{SW}	开关导通电阻	ISW = 100 mA		1.0	2.0	Ω
L _{LEAK}	开关漏电流	EN=0V, VSW=5V			1	uA
T_{SD}	热关断			150		$^{\circ}$
T_{HYST}	热迟滞			20		\mathbb{C}
V _{UVLO}	门限电压			3.3		V
V _{OV-DET}	过压门限检测			37		V
V _{OCL}	输出钳位电压	LED 开路,FB<0.2		37		V
最大占金	最大占空比			92		0.1
DC	最小占空比			16		%

表5.4 典型特性

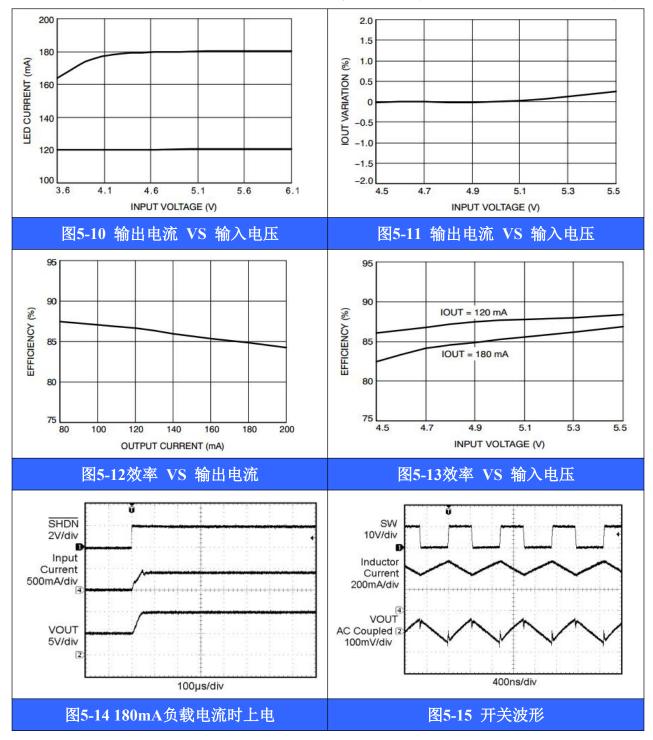

 $(V_{IN}=5.0 \text{ V}, I_{OUT}=180 \text{ mA}, T_{AMB}=25 ℃,参考图5-1所示典型应用电路,除非另有说明)$

表5.5 典型特性

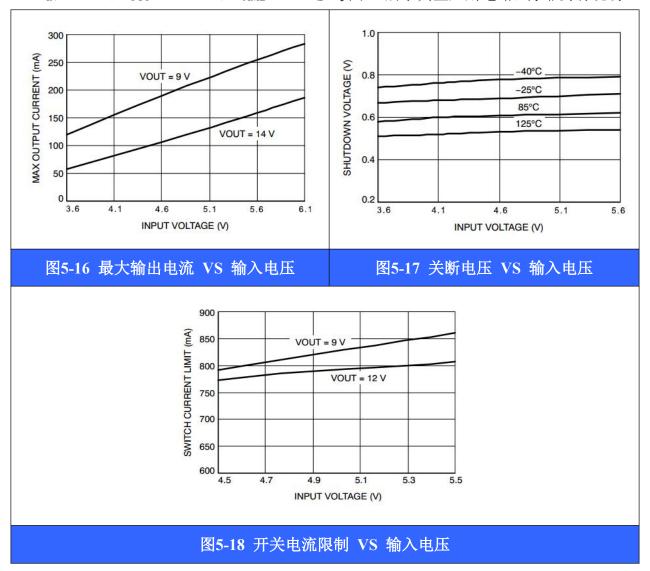

(V_{IN} =5.0 V, I_{OUT} = 180 mA, T_{AMB} = 25℃参考5-1所示的典型应用电路,除非另有说明)

表5.6 典型特性

(V_{IN} = 5.0 V, I_{OUT} = 180 mA, T_{AMB} = 25℃参考图5-1所示典型应用电路,除非另有说明)

6、应用信息

6.1、外部元件选择

6.1.1、电容

MCP4218D的输入端需要并联一个4.7uF的陶瓷电容器,输出端并联一个1uF的陶瓷电容器。在正常条件下,一个4.7uF输入电容器是足够的。如果需要更大的输出功率,应使用10uF甚至更大的输入电容。推荐客户使用X5R和X7R电容器,因为这两种电容器在一定的温度范围内具有良好的稳定性。

6.1.2、电感

在图5-1所示的典型应用电路,推荐选用22uH电感。在优先考虑效率的电路,首选低串联阻抗的电感。建议使用饱和电流等于或者大于800mA的电感。推荐客户使用22uF的Sumida CDRH6D28-220电感器(额定饱和电流为1.2A和典型串联阻抗(D.C.R)为128mΩ)。

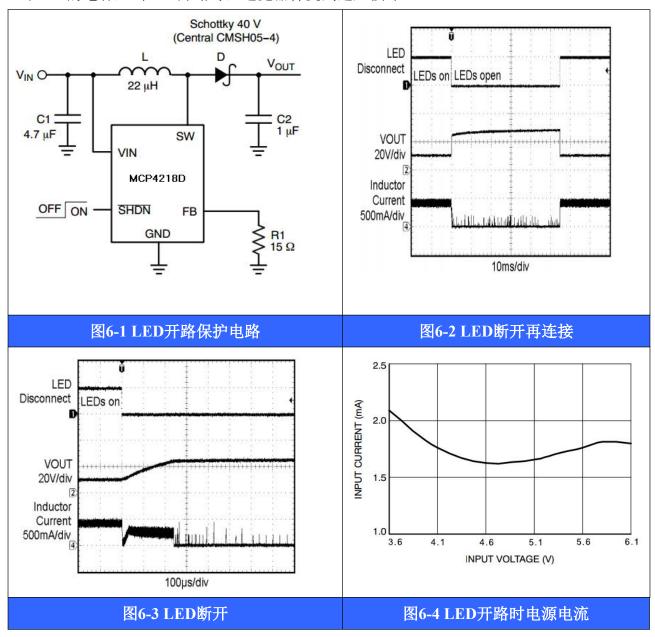
6.1.3、肖特基二极管

肖特基二极管的额定电流必须大于流经它的峰值电流。当肖特基二极管通过给定的电流,测量二极管两端的电压,就可以确定二极管的性能。为了达到最佳的效率,正向电压越低越好。当器件工作频率为1MHz时,响应时间也很重要。推荐客户使用Central Semicondutor的肖特基整流器CMSH1-40(额定电流为1A)

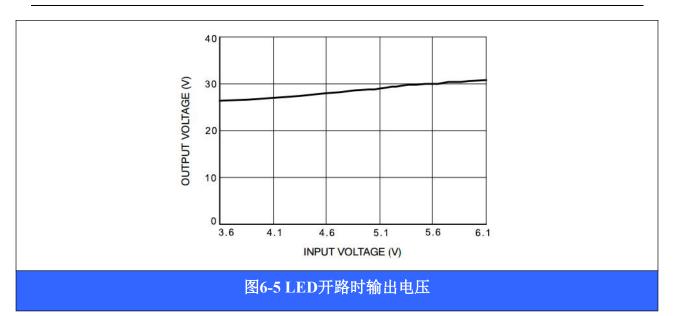
6.1.4、LED 电流设置

LED电流的大小是通过连接在反馈引脚(FB)和地之间的外部电阻器R1来设置。电阻和电流之间的关系如公式6.1所示:

$$R1 = \frac{0.3V}{LED_current}$$
 6.1


表6.1 电阻R1和LED电流

LED电流(mA)	R1(Ω)	
20	15	
25	12	
30	10	
100	3	
300	1	



6.1.5、LED开路保护

如果某个LED出现开路故障,MCP4218D将输出最大功率,输出电压持续上升,直到大约37V。一旦输出超过37V,内部保护电路立即使器件进入低功耗模式,同时,总的输入功率限制在大约6mW(输入电压约为3.6V,输入电流约为1.6mA)。SW引脚的钳位电压值最大为37V,在VOUT和FB引脚之间没有必要使用齐纳二极管,但是需要一个耐压大于37V的电容,当LED开路时,避免器件受到过压损坏。

7、亮度控制

有以下几种方法可以控制 LED 亮度。

7.1、用 SHDN 脚产生PWM信号

LED亮度可以通过 \overline{SHDN} 引脚的PWM信号来进行调节。由于LED的电流是重复开关,因此平均电流和占空比成正比。占空比为100%时, \overline{SHDN} 总是高电平,对应的LED的电流为0.3/R1。图7-1显示了PWM波形与LED电流波形的关系,其中SHDN引脚的输入波形的频率为1KHz,占空比为50%。

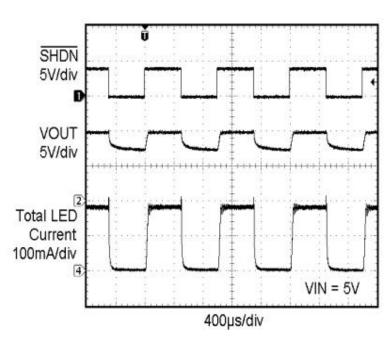


图7-1 1kHz的PWM信号加载到SHDN脚时的开关波形

7.2、PWM信号滤波

一个滤波的PWM信号可以用作可变直流电压来控制LED电流。图7-2显示了PWM控制电路连接到MCP4218D的FB脚。PWM信号有一个电压波动范围0V~2.5V。LED电流可以在0mA~20mA之间变化。这个PWM信号频率范围可以从20kHz一直到200kHz。

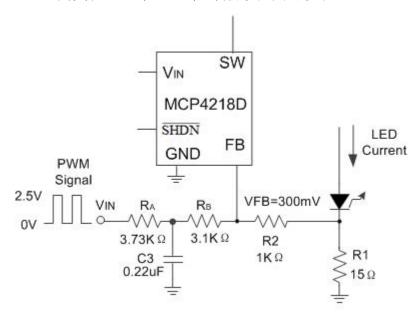
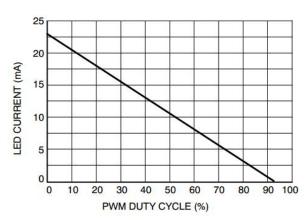
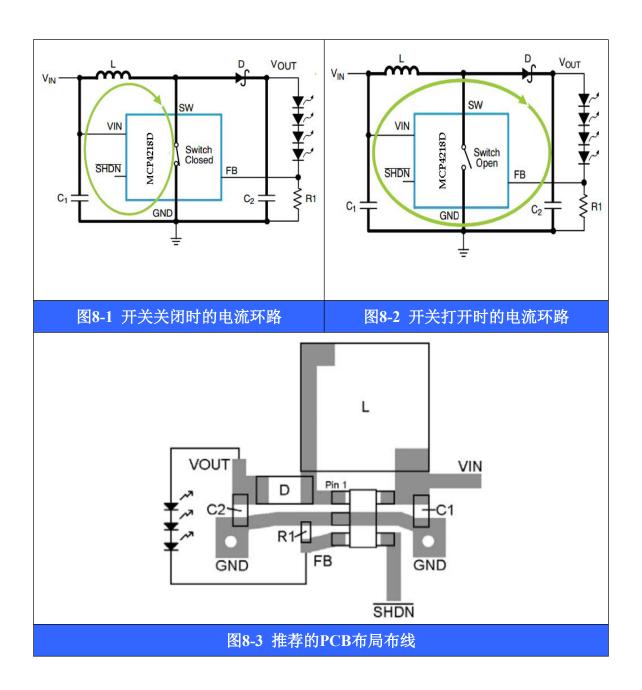


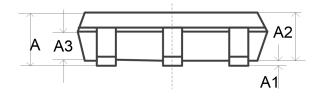
图7-2 PWM信号滤波电路

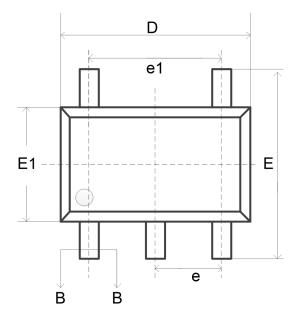
当PWM信号为0 V或0%的占空比时,最大的LED电流约22mA。当PWM信号的占空比为93%或者更大时,流过LED电流为0mA。PWM的占空比与LED电流的关系如图7-3所示。

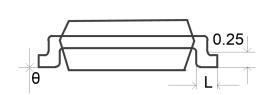



图7-3 滤波的PWM信号与灯电流的关系(0V到2.5V)

8、电路板


MCP4218D是一个高频开关调节器。为了减少EMI,纹波和噪声,高频开关电流的走线必须被小心地布在电路板上。图8-1中的加粗线显示高频开关电流的路径。所有这些走线必须短和宽,目的是减少寄生电感和电阻。在图8-1中,当MCP4218D内部开关是关闭时,环路为电流路径。在图8-2中,MCP4218D内部开关是打开时,环路为电流路径。两个环路区域应尽可能小。


电容C1必须尽可能靠近VIN和GND脚放置。电容C2必须连接到LED的最高电位的阳极。建议直接连接电容器到实地。电阻R1必须直接连接到MCP4218D的GND脚。



9、封装规格

SYMBOL	MILLIMETER		
STWIDOL	MIN	NOM	MAX
Α			1.25
A1	0.04		0.10
A2	1.00	1.10	1.20
А3	0.55	0.65	0.75
b	0.38		0.48
b1	0.37	0.40	0.43
С	0.11		0.21
c1	0.10	0.13	0.16
D	2.72	2.92	3.12
Е	2.60	2.80	3.00
E1	1.40	1.60	1.80
е	0.95 BSC		
e1	1.90 BSC		
L	0.30		0.60
θ	0		8°
<u> </u>			9

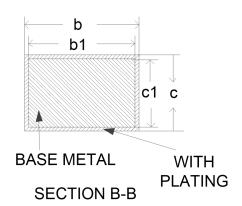


图9-1 SOT23-5L封装尺寸

10、订购信息

订购信息

型号	封 装	包装信息
MCP4218D	SOT23-5	3000pcs/Tape&Reel