BST4234L---40V, 300mA 低压差线性稳压器

概述

BST4234L 是一款高耐压、高精度的 LDO, 专为高输入电压和超低静态电流应用而设计。芯片提供可调输出电压和极低的压差(300mA 时为 300mV)。优化后内部补偿使得在片外接低 ESR 的陶瓷电容或钽电容即可实现稳定输出。其他特性包括:过流保护、热关断等。BST4234L 采用 ESOP8 封装。

特性

- 宽输入电压范围: 3.6V 至 40V
- 低压差 (300mV@300mA)
- 超低静态电流 <2μA
- 极低的关断电流 <1μA
- 钽或陶瓷电容器实现稳定性
- 出色的负载和线性调整
- 600mA 典型限流值
- 过流保护、热关断
- 紧凑型 ESOP8 封装
- 汽车 AEC-Q100-1 级认证

应用

- 电池供电的应用
- 汽车应用
- 网关应用
- 遥控无钥匙入口系统
- 开关电源后置稳压器/DC-DC 模块

典型应用电路

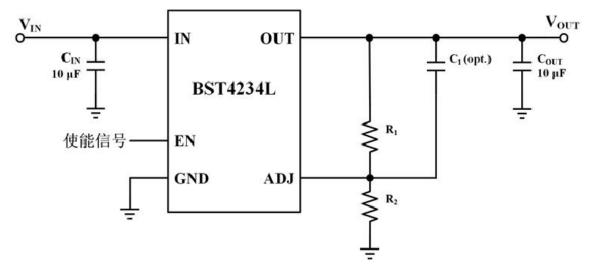


图 1 BST4234L 典型应用电路

引脚定义

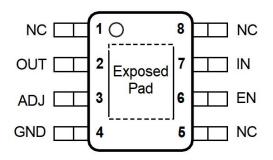


图 2 引脚定义图

表1 引脚定义

引脚名称	引脚编号	引脚描述	
NC	1,5,8	无连接。	
OUT	2	输出引脚,通过输出电容(Cour>2.2μF)将此引脚旁路到地。	
ADJ	3	输出电压调节引脚,通过电阻分压网络对输出电压进行反馈调节。 V _{OUT} =0.6×(1+R ₁ /R ₂)	
GND	4	地引脚。	
EN	6	使能引脚,悬空或低电平,芯片关断。	
IN	7	芯片电源输入,通过 10μF 电容将此引脚旁路到地。	
Exposed Pad		裸露焊盘应连接到接地层以获得更好的散热效果性能。	

原理框图

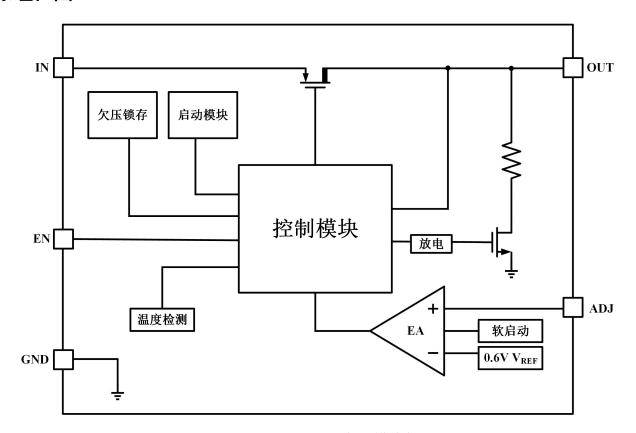


图 3 BST4234L 内部模块框图

最大额定值[1]

IN	-0.3V~40V
OUT	$\cdots\cdots\cdots -0.3 V \hspace{-0.5mm}\sim\hspace{-0.5mm} 0.3 V \hspace{-0.5mm}+\hspace{-0.5mm} V_{\rm IN}$
EN	
ADJ	0.3V~7V
功率耗散,P _D @T _A =25°C ESOP8······ 封装热阻 ^[2]	3.3W
$ heta_{ m JA}$	35°C/W
$ heta_{ m IC}$	20°C/W
工作结点温度	-40°C~150°C
引线温度(10s 焊接)	260°C
存储温度范围	
$ESD^{[3]}$	
V_{ESD_HBM} ·····	3000V~+3000V
推荐工作条件[4]	
输入电源电压	3.6V~40V
环境温度范围	40°C~125°C

[1]超过额定最大范围的应力条件可能对芯片造成永久性损坏,在超过推荐工作条件外的应力条件下运行时,芯片功能无法得到保障。长时间暴露在额定最大应力条件下可能会影响芯片的可靠性。

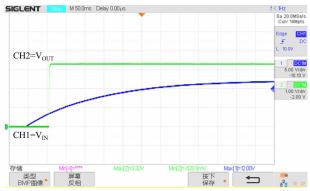
 $[2]\theta_{JA}$ 是在两层 PCB 板上, $T_A=25$ °C的自然对流条件下测量的。

[3]ESD-HBM 依照 ANSI/ESDA/JEDEC JS-001 标准。

[4]不保证器件在其工作条件之外正常运行。

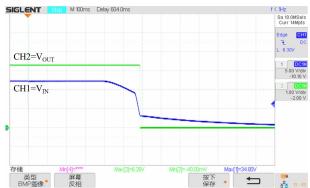
主要电气参数

 $(V_{EN}=V_{IN}=12V, V_{OUT}=3.3V, T_A=25$ ℃,除非另有说明,这些值由测试设计或统计相关性保证)

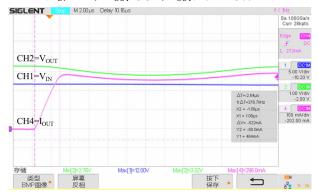

参数	符号	测试条件	最小值	典型值	最大值	单位
输入电压	V _{IN}	I _{OUT} =10mA	3.6		40	V
参考电压	V_{REF}		591	600	609	mV
线性调整率	ΔV_{LNR}	$V_{IN} = (V_{OUT} + 0.3V) \sim 36V,$ $I_{O} = 10 \text{mA}$		1	1.5	mV/V
负载调整率	ΔV_{LDR}	$I_O=10$ mA ~ 300 mA		0.25	1	%
	$ m V_{dr}$	$I_O=10$ mA		10	20	mV
压降		$I_O=150mA$		150	300	mV
		$I_O=300mA$		300	550	mV
静态电流	I_Q	空载		2	4	μΑ
关断电流	I _{SHDN}	V _{EN} =0V, V _{IN} =24V			1.5	μА
输出电流	I_{O}	$V_{IN} = V_{OUT} + 0.6V$	0		300	mA
输出电流限制	I_{LIM}	$V_{ ext{IN}}\!\!=\!\!6V$, $V_{ ext{OUT}}\!\!=\!\!0.9*V_{ ext{OUT(normal)}}$	300	600	900	mA
电源抑制比	PSRR	$f=1\mathrm{kHz}$, $C_{\mathrm{OUT}}=2.2\mu\mathrm{F}$		60		dB
七七 <i>小</i> 米144年17日		$f=150kHz$, $C_{OUT}=2.2\mu F$		40		dB
输入欠压锁存阈值	V _{UVLO}	V _{IN} 上升	3.2	3.3	3.6	V
欠压锁存迟滞	V _{UVLO_HYS}			0.2		V
关断放电电阻	R _{DIS}			600		Ω
使能输入逻辑高电平	V _{EN_H}	V _{IN} =5V	1.5			V
使能输入逻辑低电平	V _{EN_L}	V _{IN} =5V			0.8	V
热关断温度	T_{SD}			165		°C
热关断迟滞	T _{HYS}			20		°C

典型特性

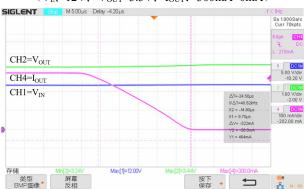
(典型应用电路, T_A=25℃)


电源启动

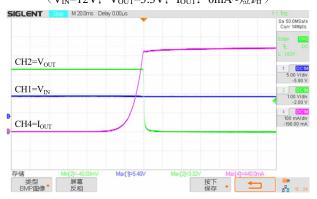
 $(V_{IN}=12V; V_{OUT}=3.3V; I_{OUT}=55mA)$


电源关断

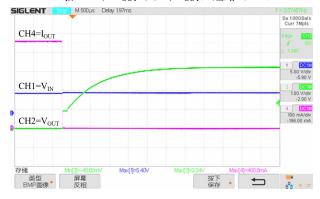
 $(V_{IN}\!\!=\!\!12V;\ V_{OUT}\!\!=\!\!3.3V;\ I_{OUT}\!\!=\!\!55mA)$


负载瞬态响应

 $(\ V_{IN}\!\!=\!\!12V;\ \ V_{OUT}\!\!=\!\!3.3V;\ \ I_{OUT}\text{: }0\text{mA}\!\!\sim\!\!300\text{mA})$


负载瞬态响应

 $(V_{IN}=12V; V_{OUT}=3.3V; I_{OUT}: 300mA\sim0mA)$


短路保护

($V_{IN}=12V$; $V_{OUT}=3.3V$; I_{OUT} : 0mA~短路)

短路恢复

(V_{IN}=12V; V_{OUT}=3.3V; I_{OUT}: 短路~0mA)

应用信息

BST4234L 是一款 300mA 低压差的线性稳压器。基于该芯片的应用电路相对简单,只需要为目标应用规格选择输入电容 C_{IN} 、输出电容 C_{OUT} 和反馈电阻(R_1 和 R_2)。BST4234L 具有可调输出,可通过两个外部电阻进行设置。芯片具有全面的保护功能,包括过流限制、输出短路保护和过温保护。

反馈电阻分压器 R1和 R2

选择 R_1 和 R_2 来设置适当的输出电压。为了最大限度地降低轻负载下的功耗,最好为 R_1 和 R_2 选择较大的电阻值。建议使用 1%的公差或更高精度的分压电阻,两个电阻的阻值在 $10k\Omega$ 到 $10M\Omega$ 之间,参考如下计算公式:

$$R_2 = R_1 * \frac{0.6V}{V_{OUT} - 0.6V}$$

$$R_1 \longrightarrow FB$$

$$R_2 \longrightarrow FB$$

输入电容 CIN

器件输入引脚和接地引脚之间建议增加一个 10μF 的输入电容。在此应用中,建议使用典型的 X5R 或更高等级的陶瓷电容器。该输入电容必须靠近器件放置,以最大限度地降低输入噪声。

输出电容 Cour

为了保持瞬态稳定性,BST4234L 专门设计用于使用非常小的陶瓷输出电容器。10μF 输出电容可用于此应用。较高的电容值有助于改善瞬态特性。输出电容的 ESR 至关重要,因为它形成零点以提供环路稳定性所需的相位超前。

压差

选 BST4234L 具有非常低的压差,因为功率 PMOS 的超低 R_{DS(ON)}决定了可用的最低电源。 $V_{DROPOUT} = V_{IN} - V_{OUT} = R_{DS(ON)} \times I_{OUT}$

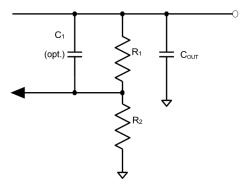
过流和短路保护

该器件具有过流和短路保护功能。电流限制电路将输出电流调节到其限制阈值,以保护 IC 免受损坏。在过流或短路条件下,IC 的功率损耗相对较高,并且可能会触发热保护。

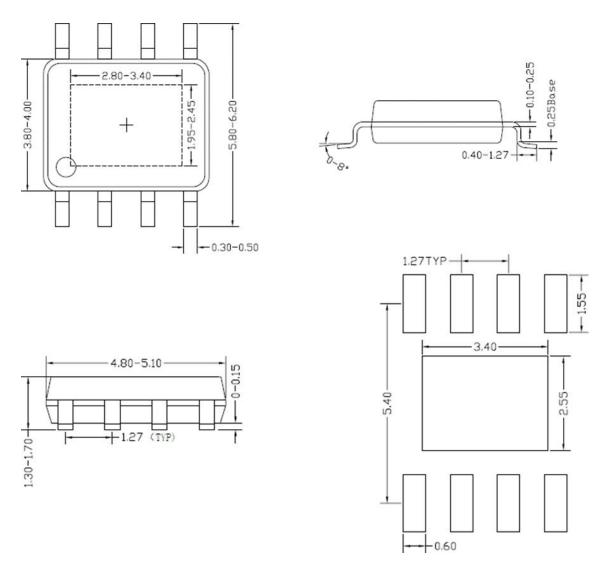
散热注意事项

BST4234L 可在整个工作温度范围内提供高达 300mA 的电流。但是,在较高的环境温度下,最大输出电流必须降额。在所有可能的条件下,结温必须在工作条件下规定的范围内。 功耗可以根据输出电流和稳压器两端的压降来计算:

 $P_D = (V_{IN} - V_{OUT}) \times I_{OUT} + V_{IN} \times I_{GND}$


任何一组条件下的最终工作结温可通过以下公式估算:

 $P_{D(MAX)} = (T_{J(MAX)} - T_A)/\theta_{JA}$


式中 T_{J(MAX)}是芯片的最高结温, T_A是最高环境温度。

负载瞬态注意事项

BST4234L集成了补偿组件,以实现良好的稳定性和快速瞬态响应。在某些应用中,选择与 R_1 并联一个小陶瓷电容可能会进一步加快负载瞬态响应,建议用于负载瞬态阶跃要求较大的应用。

封装信息

ESOP8 封装外形图

订购信息

型 号	封 装	最小包装
BST4234L	ESOP8	2500/Tape & Reel